A long term aim of nuclear reprogramming is surely to understand neural regeneration – possibly the most important aim of nuclear reprogramming.

—John Gurdon (23 Sept 2015)
INVITED REVIEWS

Does being female provide a neuroprotective advantage following spinal cord injury? 1533
Jeffrey P. Datto, Jackie Yang, W. Dalton Dietrich, Damien D. Pearse

Ischemic long-term-potentiation (iLTP): perspectives to set the threshold of neural plasticity toward therapy 1537
Maximilian Lenz, Andreas Vlachos, Nicola Maggio

Delayed peripheral nerve repair: methods, including surgical 'cross-bridging' to promote nerve regeneration 1540
Tessa Gordon, Placheta Eva, Gregory H. Borschel

HIGHLIGHTS

Neuroprotection and recovery from early-life adversity: considerations for environmental enrichment 1545
Amanda C. Kentner

The emerging roles of transplanted radial glial cells in regenerating the central nervous system 1548
Robin E. White, Denis S. Barry

Targeting α7 nicotinic acetylcholine receptors: a future potential for neuroprotection from traumatic brain injury 1552
Samuel S. Shin, C. Edward Dixon

Regulation of axonal remodeling following spinal cord injury 1555
Anne Jacobi, Florence M. Bareyre

Handling iron in restorative neuroscience 1558
Lisa Junil Routhe, Torben Moos

PERSPECTIVES

Old dogs with new tricks: intra-axonal translation of nuclear proteins 1560
Jeffery L. Twiss, Tanuja T. Merianda

Schwann cell Miz without POZ: degeneration meets regeneration 1563
David Fuhrmann, Hans-Peter Elsässer

Exosomes in neurological disease, neuroprotection, repair and therapeutics: problems and perspectives 1565
Anuradha Kalani, Neetu Tyagi

Superparamagnetic iron oxide nanoparticles: promote neuronal regenerative capacity? 1568
Jenni Neubert, Anja U. Bräuer

Role of myelin sheath energy metabolism in neurodegenerative diseases 1570
Silvia Ravera, Isabella Punfoli

Effects of cancer therapy on hippocampus-related function 1572
Miyoung Yang, Changjong Moon

Insights of the brain damage response using antibodies identifying surface antigens on neural stem cells and neuroblasts 1574
Silvia Santamaria, Jose A. Garcia-Sanz

Glypican 4 down-regulation in pluripotent stem cells as a potential strategy to improve differentiation and to impair tumorigenicity of cell transplants 1576
Rosanna Donò

Transforming growth factor β1-mediated anti-inflammation slows progression of midbrain dopaminergic neurodegeneration in Parkinson’s disease? 1578
Björn Spittau

Neurodegeneration and neuroinflammation: two processes, one target 1581
Paulina Carriba, Joan X. Comella

Myelin morphology and axon pathology in demyelination during experimental autoimmune encephalomyelitis 1584
Yoshio Bando

Gene therapy for Parkinson’s disease: a decade of progress supported by posthumous contributions from volunteer subjects 1586
Raymond T. Bartus

Fortuitous benefits of activity-based rehabilitation in stem cell-based therapy for spinal cord repair: enhancing graft survival 1589
Dong Hoon Hwang, Hae Young Shin, Byung Gon Kim

Repositioning imatinib for spinal cord injury 1591
Jacob Kjell, Lars Olson

Neural prostheses for restoring functions lost after spinal cord injury 1594
Marc Fakhoury

Targeting acute inflammation to complement spinal cord repair 1596
Faith H. Brennan, Marc J. Ruitenber

Acute optic neuritis: a clinical paradigm for evaluation of neuroprotective and restorative strategies? 1599
Sara S. Qureshi, Elliot M. Frohman

Role of GSK3 in peripheral nerve regeneration 1602
Heike Diekmann, Dietmar Fischer

HIGHLIGHTS

Role of myelin sheath energy metabolism in neurodegenerative diseases 1570
Silvia Ravera, Isabella Punfoli

Insights of the brain damage response using antibodies identifying surface antigens on neural stem cells and neuroblasts 1574
Silvia Santamaria, Jose A. Garcia-Sanz

Glypican 4 down-regulation in pluripotent stem cells as a potential strategy to improve differentiation and to impair tumorigenicity of cell transplants 1576
Rosanna Donò

Transforming growth factor β1-mediated anti-inflammation slows progression of midbrain dopaminergic neurodegeneration in Parkinson’s disease? 1578
Björn Spittau

Neurodegeneration and neuroinflammation: two processes, one target 1581
Paulina Carriba, Joan X. Comella

Myelin morphology and axon pathology in demyelination during experimental autoimmune encephalomyelitis 1584
Yoshio Bando

Gene therapy for Parkinson’s disease: a decade of progress supported by posthumous contributions from volunteer subjects 1586
Raymond T. Bartus

Fortuitous benefits of activity-based rehabilitation in stem cell-based therapy for spinal cord repair: enhancing graft survival 1589
Dong Hoon Hwang, Hae Young Shin, Byung Gon Kim

Repositioning imatinib for spinal cord injury 1591
Jacob Kjell, Lars Olson

Neural prostheses for restoring functions lost after spinal cord injury 1594
Marc Fakhoury

Targeting acute inflammation to complement spinal cord repair 1596
Faith H. Brennan, Marc J. Ruitenber

Acute optic neuritis: a clinical paradigm for evaluation of neuroprotective and restorative strategies? 1599
Sara S. Qureshi, Elliot M. Frohman

Role of GSK3 in peripheral nerve regeneration 1602
Heike Diekmann, Dietmar Fischer
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A novel therapeutic target for peripheral nerve injury-related diseases: aminoacyl-tRNA synthetases</td>
<td>1656</td>
</tr>
<tr>
<td>Byung Sun Park, Seung Geun Yeo, Junyang Jung, Na Young Jeong</td>
<td></td>
</tr>
<tr>
<td>The longitudinal epineural incision and complete nerve transection method for modeling sciatic nerve injury</td>
<td>1663</td>
</tr>
<tr>
<td>Xing-long Cheng, Pei Wang, Bo Sun, Shi-bo Liu, Yun-feng Gao, Xin-ze He, Chang-yu Yu</td>
<td></td>
</tr>
<tr>
<td>Femoral nerve regeneration and its accuracy under different injury mechanisms</td>
<td>1669</td>
</tr>
<tr>
<td>Aikeremujiang•Muheremu, Qiang Ao, Yu Wang, Peng Cao, Jiang-yu Yu</td>
<td></td>
</tr>
<tr>
<td>Comparison of short- with long-term regeneration results after digital nerve reconstruction with muscle-in-vein conduits</td>
<td>1674</td>
</tr>
<tr>
<td>Jennifer Lynn Schiefer, Lukas Schulz, Rebekka Rath, Stéphane Stahl, Theodora Manoli</td>
<td></td>
</tr>
<tr>
<td>Inflammation and cutaneous nervous system involvement in hypertrophic scarring</td>
<td>1678</td>
</tr>
<tr>
<td>Shao-hua Li, Heng-jiang Yang, Hu Xiao, Yi-bing Wang, De-chang Wang, Ran Huo</td>
<td></td>
</tr>
<tr>
<td>Cranial Nerve Injury Repair and Neural Regeneration</td>
<td>1683</td>
</tr>
<tr>
<td>An efficient strategy for establishing a model of sensorineural deafness in rats</td>
<td>1690</td>
</tr>
<tr>
<td>Long Ma, Hai-jin Yi, Fei-qian Yuan, Wei-wei Guo, Shi-ming Yang</td>
<td></td>
</tr>
<tr>
<td>Anterior subcutaneous transposition of the ulnar nerve improves neurological function in patients with cubital tunnel syndrome</td>
<td>1696</td>
</tr>
<tr>
<td>Wei Huang, Pei-xun Zhang, Zhang Peng, Feng Xue, Tian-bing Wang, Bao-guo Jiang</td>
<td></td>
</tr>
<tr>
<td>Coexistent Charcot-Marie-Tooth type 1A and type 2 diabetes mellitus neuropathies in a Chinese family</td>
<td>1700</td>
</tr>
<tr>
<td>A-ping Sun, Lu Ting, Qin Liao, Hui Zhang, Ying-shuang Zhang, Jun Zhang</td>
<td></td>
</tr>
<tr>
<td>Comparison of commonly used retrograde tracers in rat spinal motor neurons</td>
<td>1650</td>
</tr>
<tr>
<td>You-lai Yu, Hai-yu Li, Pei-xun Zhang, Xiao-feng Yin, Na Han, Yu-hui Kou, Bao-guo Jiang</td>
<td></td>
</tr>
<tr>
<td>The HMGB1 signaling pathway activates the inflammatory response in Schwann cells</td>
<td>1706</td>
</tr>
<tr>
<td>Li-li Man, Fan Liu, Ying-jie Wang, Hong-hua Song, Hong-bo Xu, Zi-wen Zhu, Qing Zhang, Yong-jun Wang</td>
<td></td>
</tr>
</tbody>
</table>

Neural Regeneration Research Vol 10 (No. 10), October 2015

Brain Injury Repair and Neural Regeneration

Monocarboxylate transporter 4 plays a significant role in the neuroprotective mechanism of ischemic preconditioning in transient cerebral ischemia

Seongkweon Hong, Ji Yun Ahn, Geum-Sil Cho, In Hye Kim, Jeong Hwi Cho, Ji Hyeon Ahn, Joon Ha Park, Moo-Ho Won, Bai Hui Chen, Bich-Na Shin, Hyun-Jin Tae, Seung Min Park, Joon Hwi Cho, Soo Young Choi, Jae-Chul Lee

Co-culture of oligodendrocytes and neurons can be used to assess drugs for axon regeneration in the central nervous system

Lin Gang, Yu-chen Yao, Ying-fu Liu, Yi-peng Li, Kai Yang, Lei Lu, Yuan-chi Cheng, Xu-yi Chen, Yue Tu

Geniposide prevents rotenone-induced apoptosis in primary cultured neurons

Lin Li, Juan Zhao, Ke Liu, Guang-lai Li, Yan-ting Han, Yue-ze Liu

Decoding brain responses to pixelized images in the primary visual cortex: implications for visual cortical prostheses

Bing-bing Guo, Xiao-bin Zheng, Zhen-gang Lu, Xing Wang, Zheng-qin Yin, Wen-sheng Hou, Ming Meng

Spinal Cord Injury Repair and Neural Regeneration

Neuroprotective effects of electroacupuncture on early- and late-stage spinal cord injury

Min-fei Wu, Shu-quan Zhang, Jia-bei Liu, Ye Li, Qing-san Zhu, Rui Gu

Peripheral Nerve Injury Repair and Neural Regeneration

Electrospun and woven silk fibroin/poly(lactic-co-glycolic acid) nerve guidance conduits for repairing peripheral nerve injury

Ya-ling Wang, Xiao-mei Gu, Yan Kong, Qi-lin Feng, Yu-min Yang

Does glioblastoma cyst fluid promote sciatic nerve regeneration?

Rafet Ozay, Abit Aktas, Mevlüt Özgür Tüacakçiöglu, Bora Gürer, Bülent Erdoğan, Yusuf Şikrü Çağlar

Pulsed electrical stimulation protects neurons in the dorsal root and anterior horn of the spinal cord after peripheral nerve injury

Bao-an Pei, Jin-hua Zi, Li-sheng Wu, Can-hua Zhang, Yun-zhen Chen

Neural Regeneration Research Vol 10 (No. 10), October 2015

SPECIAL ISSUE

Anterior subcutaneous transposition of the ulnar nerve improves neurological function in patients with cubital tunnel syndrome

Wei Huang, Pei-xun Zhang, Zhang Peng, Feng Xue, Tian-bing Wang, Bao-guo Jiang

Coexistent Charcot-Marie-Tooth type 1A and type 2 diabetes mellitus neuropathies in a Chinese family

A-ping Sun, Lu Ting, Qin Liao, Hui Zhang, Ying-shuang Zhang, Jun Zhang

Comparison of commonly used retrograde tracers in rat spinal motor neurons

You-lai Yu, Hai-yu Li, Pei-xun Zhang, Xiao-feng Yin, Na Han, Yu-hui Kou, Bao-guo Jiang

The HMGB1 signaling pathway activates the inflammatory response in Schwann cells

Li-li Man, Fan Liu, Ying-jie Wang, Hong-hua Song, Hong-bo Xu, Zi-wen Zhu, Qing Zhang, Yong-jun Wang

Neural Regeneration Research Vol 10 (No. 10), October 2015

CONTENT